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Abstract
We study a charged two-dimensional particle confined to a straight parabolic-
potential channel and exposed to a homogeneous magnetic field under the
influence of a potential perturbation W . If W is bounded and periodic along the
channel, a perturbative argument yields the absolute continuity of the bottom of
the spectrum. We show that it can have any finite number of open gaps provided
that the confining potential is sufficiently strong. However, if W depends on
the periodic variable only, we prove by the Thomas argument that the whole
spectrum is absolutely continuous, irrespective of the size of the perturbation.
On the other hand, if W is small and satisfies a weak localization condition in
the the longitudinal direction, we prove by the Mourre method that a part of the
absolutely continuous spectrum persists.

PACS numbers: 73.43.Cd, 03.65.Db, 05.60.Gg

1. Introduction

The problem of magnetic transport goes back to the early 1980s [Ha, MS] when it was found
that the transport can be achieved in a system with a homogeneous magnetic field if boundaries
are present. These so-called edge currents found numerous applications in solid-state physics.
Recently it has been shown that that such a type of transport exists even when the boundary is
replaced by a periodic array of point obstacles [U,EJK]; in this case the propagation along the
array is a purely quantum effect.

On the other hand, it was also recognized that a suitable translationally symmetric variation
of the magnetic field itself can induce transport. A simple and transparent example of such a
variation is provided by a step of the magnetic field intensity. As with the conventional edge
states, the propagation here can also be understood at the classical level, since the cyclotronic
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radius at both sides of the step is different, see [CFKS, section 6.5]. Similarly transport can exist
in the case when the magnetic field has the same asymptotics in both directions perpendicular
to the field variation [Iw, MP, EK].

Naturally, it is of both theoretical and practical interest to understand how such a magnetic
transport is influenced by various perturbations. Recently several studies treated the problem
of edge-current stability with respect to a sufficiently weak ‘random’ perturbation (i.e. a
deterministic bounded the potential of an arbitrary shape). In these works the particle was
supposed to be confined in a semi-infinite region by either a smooth potential wall which
vanishes in one half-plane and rapidly increases in the other [MMP], or by a Dirichlet
boundary [BP,FGW]. The proofs were based on commutator methods. In [MMP] it was shown,
using a version of the virial theorem, that in certain parts of the spectrum the Hamiltonian of
the particle cannot have any eigenstates, so that the spectrum there is purely continuous.
In [BP, FGW] the Mourre theory of positive commutators was used to prove that for energy
intervals away from the Landau levels the spectrum remains purely absolutely continuous, i.e.
that the transport survives in the presence of an impurity potential. Moreover, the argument
of [FGW] works under weaker conditions and extends the result to more general planar domains
containing an open wedge.

Much less is known about the situation when the particle is confined from both sides. It
is true, of course, that many numerical studies of such systems which model various quantum
wires can be found in the physical literature, but rigorous results are scarce. This is our
motivation in considering such a potentially confined channel. For the sake of simplicity we
suppose that the channel is straight and that the potential is parabolic with constant strength
along the axis. This is certainly a reasonable model which has the advantage that it allows us
to solve the unperturbed problem analytically. We prove two types of results.

First, if a bounded potentialW periodic in the longitudinal direction is added, the bottom of
the spectrum remains absolutely continuous for weak enough perturbations. On the one hand,
we discuss the number of gaps in such a continuous spectrum as a function of the strength of the
confining potential. On the other hand, we prove that if W depends only on the longitudinal or
on the transverse variable, the whole spectrum remains absolutely continuous, independently
of the strength of the potential.

Second, if the perturbation W is no longer assumed to be periodic, we prove that a part
of the spectrum remains absolutely continuous provided W is small in a suitable sense and
satisfies a weak ‘localization’ condition.

Let us describe in more detail the results and contents of this paper. The unperturbed
Hamiltonian will be

H0 = HL(B) + ω2 y2 (1.1)

where HL(B) = p2
y + (px + By)2 is the free magnetic Hamiltonian with a homogeneous

magnetic field B. The last operator corresponds to the Landau gauge, which we will use
throughout the paper.

In the following two sections we analyse periodic perturbations, i.e. the structure of the
spectrum of

H = H0 + W (1.2)

where the potential W(x, y) is �-periodic in x. The periodicity enables us to use the Bloch
decomposition and to write the generalized eigenfunctions of H0 in the form

ψm(x)ϕn(y,m + θ) (1.3)

where m ∈ Z, n ∈ N0, and θ is the corresponding Bloch parameter running through the
Brillouin zone [−π/�, π/�). In the absence of perturbation it is straightforward to see
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that the spectrum is purely absolutely continuous and includes all energies in the interval[√
B2 + ω2,∞)

. Perturbation theory then shows that for any E > 0, the part of the spectrum

inside the interval
[√

B2 + ω2 − ‖W‖, E]
is still purely absolutely continuous, provided ‖W‖

is small enough.
Next, using an appropriately modified Thomas argument (cf [Tm] and the generalization

in [RS, section XIII.16]) we will prove in theorem 2.1 that the whole spectrum of H remains
purely absolutely continuous ifW(x, y) ≡ W(x) depends on x only and is essentially bounded.
The same is true if W(x, y) ≡ W(y) depends on the transverse variable only and is essentially
bounded.

Finally, we address the question about the number of open gaps in the spectrum. One
can find a partial answer using properties of the function W0 := (ϕ0,W(·, y)ϕ0) which
represents the projection of the potential onto the lowest transverse mode. If the latter is
non-constant, the one-dimensional Schrödinger operator K = −∂2

x + W0(x) on L2(R) has
by [RS, theorem XIII.90] a purely absolutely continuous spectrum with open gaps—at least
one but generically infinitely many. We will show in section 3 that these gaps persist in the
spectrum of the operator (1.2) provided that the coupling constant of the confinement is large
enough, see theorem 3.1. Therefore, such a channel can have generically any finite number of
open gaps for any bounded x-periodic perturbation, provided it is confining enough.

Non-periodic perturbations require a different technique. In the last part of this paper,
section 4, we address this question in a similar way to that of the papers mentioned above,
namely by using a Mourre operator related to a distinguished classical quantity. Recall that the
central point of the Mourre theory is to find a suitable self-adjoint conjugate operatorA such that
in certain states the expectation value of [H0 + W, iA] will have a definite sign. Classically, it
amounts to finding an observable increasing in time. This motivated the choice of the conjugate
operator in [BP, FGW] where the classical particle followed the boundary counterclockwise
and therefore propagated in a definite direction. Accordingly, the coordinate parallel to the
boundary gave a conjugate operator with the needed properties.

By contrast, in our case there are two ‘boundaries’ which allow for classical motion in
both directions along the x axis. Of course, they are edges with a grain of salt, since their
‘distance’ depends on the particle energy.

Little is presently known about the stability of transport in systems without a preferred
direction. The existing results always assume in some form that the ‘opposite’ edge currents
can be placed at arbitrarily large distance to prevent their destructive interference. This is the
case for domains containing wedges in [FGW] which we mentioned earlier. Another example
is the recent paper [FM], which studies the nature of the spectrum of the random Schrödinger
operator with magnetic field in a finite macroscopic system. The particle is supposed to be
confined in one direction by two smooth boundaries separated by a distance equal toL, and the
other direction is L periodic. It is then shown that for L large enough there exist realizations of
random potentials such that the spectrum in the vicinity of Landau levels contains both current
carrying states and localized states. Roughly speaking, this is due to decoupling of bulk and
edge states in the limit of large L. It is also announced, that away from the Landau levels there
are current carrying states only. Notice that the transverse distance in [FM] may grow slower,
say as Lα with α ∈ (0, 1), but it cannot be kept constant.

In models of a channel with a fixed cross section there is no external parameter to control
the decoupling, and it is not a priori clear how the spectrum will behave. We start the Mourre
analysis by solving the classical problem in the absence of the potential W . The trajectories
turn out to be drifting ellipses. We take the x-coordinate of the ellipse centre multiplied by the
corresponding momentum component as the quantity to determine the conjugate operator. This
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allows us to find that under suitable smallness assumptions aboutW there are intervals separated
from the modified Landau levels where the spectrum contains no eigenvalues or even, under
stronger hypothesis on W , remains absolutely continuous. Due to the destructive interference
between the opposite ‘edge’ currents our conditions on the disorder potential include, in
addition to the finiteness of sup |W(x, y)| required in [BP, FGW], also a sort of localization
requirement. In particular, we need sup |x∂xW(x, y)| respectively sup |x2∂2

xW(x, y)| to be
finite. Of course, many ‘non-local’ potentials fit in, say those with different limits as x → ±∞,
and any power-like decay at large |x| will do, however, the said condition excludes the most
typical random potentials in the form of a sum of randomly placed copies of a single-impurity
potential. For such potentials we establish the existence of transport only in the situation
when the ‘dirty’ part of the channel has a finite length, see theorem 4.3. We also discuss the
behaviour of our model in the limit of strong confinement, i.e. when ω → ∞.

More than that, we show in section 4.3 that any Mourre operator quadratic in the canonical
variables will lead here to the same restriction. Hence an attempt to establish for a ‘fixed-width’
channel a result comparable to [BP, FGW] by the conjugate-operator method has to employ
anotherA. Obvious candidates are those which combine the first-order canonical variable with
a (sign-changing) localization of the particle in the vicinity of the edges. However, attempts in
this direction which we are aware of have not been successful so far and the problem remains
open.

2. Periodic perturbations

In this section we first give explicit expressions for the eigenvalues and eigenfunctions of H0,
which is possible due to the specific choice of our confinement potential. Then, as mentioned
above, we will investigate the nature of the spectrum when we add a periodic perturbation.

The Hamiltonian of the system we are interested in is thus of the following form:

H = −∂2
y + (−i∂x + yB)2 + ω2y2 + W(x, y) on L2(R2) (2.1)

where W is bounded and �-periodic in x. The scaling

x, y → λ x, λ y B → λ−2 B ω → λ−2ω W → λ−2 W

gives H → λ−2H . Without loss we can thus assume � = 2π . By [RS, theorem 10.34], H
is e.s.a. on C∞

0 (R2). We use the periodicity of W and apply the Bloch decomposition in x

writing

H =
∫ ⊕

|θ |�1/2
H(θ) dθ (2.2)

where H(θ) has the form (2.1) on L2([0, 2π ] × R) with the boundary conditions

∂jxψ(2π−, y) = eiθ2π∂jxψ(0 +, y) j = 0, 1. (2.3)

Let us now turn to the properties of the fibre operator

H̃0(θ) = −∂2
y + (−i∂x + yB)2 + ω2y2. (2.4)

After transferring θ from the boundary conditions to the operator we find that H̃0(θ) is unitarily
equivalent to

H0(θ) = (−i∂x + By + θ)2 − ∂2
y + ω2y2 on L2([0, 2π ] × R) (2.5)

with periodic boundary conditions at x = 0 and 2π . We exhibit below a complete set of
eigenvectors in

De ≡ {f ∈ W 2,2([0, 2π ])|f (0) = f (2π), f ′(0) = f ′(2π)} ⊗ S(R) (2.6)
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where S(R) denotes the set of the Schwarz function, showing that H0(θ) is essentially self-
adjoint on De. Next we show that H0(θ) is a holomorphic family of type A in the sense of
Kato. LetH0(0) be self-adjoint on its domainD and let us formally expand the operatorH0(θ)

as

H0(θ) = (−i∂x + By)2 − ∂2
y + ω y2 + 2θ(−i∂x + By) + θ2. (2.7)

We note that (−i∂x + By) is symmetric on De and denote the resolvent by R0(θ, z) =
(H0(θ) − z)−1. Now, for any ϕ ∈ De

‖(−i∂x + By)ϕ‖2 � 〈ϕ|H0(0)ϕ〉 = 〈R0(0, z)(H0(0) − z)ϕ|H0(0)ϕ〉
� ‖R0(0, z)‖‖H0(0)ϕ‖2 + |z|〈ϕ|R0(0, z̄)H0(0)ϕ〉
� C(z)‖H0(0)ϕ‖2 + |z|2C(z)‖ϕ‖2 (2.8)

where C(z) = O(1/Im z), as Im z → ∞, |Re z| < ∞. From theorem 5.4.4 p 288 in [Ka],
we deduce that that (−i∂x + By) is relatively bounded with respect to H0(0) on De, with
arbitrarily small relative bound (to this end, take |Im z| large enough). Hence the domain of
H0(θ) coincides with D for any complex θ , and the expansion (2.7) shows that the vector
H0(θ)ψ is holomorphic in θ for any ψ ∈ D. That means H0(θ) is a self-adjoint holomorphic
family of type A in the whole complex plane, see [Ka], pp 375 and 385. The same is true for
the perturbed operator

H(θ) = H0(θ) + W(x, y) (2.9)

when W is bounded.
In order to find the spectrum of H0(θ) we introduce the basis

ψm(x) = (2π)−1/2 exp(imx) (2.10)

and get the decomposition

H0(θ) =
⊕
m∈Z

|ψm〉Hm
0 (θ)〈ψm|

=
⊕
m∈Z

|ψm〉[(m + By + θ)2 − ∂2
y + ω2y2

]〈ψm| (2.11)

where Hm
0 (θ) = 〈ψm|H0(θ)ψm〉. By a unitary transform inducing a (θ + m)-dependent shift

of the argument we find that Hm
0 (θ) is unitarily equivalent to

H̃m(θ) = −∂2
u + α2u2 + β(m + θ)2 (2.12)

with α =
√
B2 + ω2, β = ω2/(B2 + ω2), and u = y + B(m + θ)/(B2 + ω2). This operator is

clearly analytic in θ . Therefore we get the spectrum

σ(Hm
0 (θ)) = {

α(2n + 1) + β(m + θ)2
} = {En(θ + m)}n∈N0

(2.13)

where the corresponding eigenfunctions of Hm
0 (θ), ϕm+θ

n (y), are translates of the usual
harmonic oscillator states ϕn(u). More precisely, if Vθ+m is the unitary operator from L2(Ry)

to L2(Ru) defined by

(Vθ+mf )(u) = f (u − B(m + θ)/(B2 + ω2)) (2.14)

then Vθ+mH
m
0 V −1

θ+m = H̃m(θ) and ϕm+θ
n (y) = (V −1

θ+mϕn)(y). For a later purpose, let us also
introduce the unitary operator V (θ) from L2(Rx × Ru) to L2(Rx × Ry) given as

V (θ) =
⊕
m∈Z

Vθ+m. (2.15)

Let us turn to

H(θ) = H0(θ) + W(x, y) on L2([0, 2π ] × R) (2.16)
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with periodic boundary conditions at x = 0 and 2π . Since W is bounded, it is relatively
compact w.r.t. H0(θ) and the essential spectrum of H(θ) is thus the same as that of H0(θ). It
follows that σ(H(θ)) is discrete. The corresponding eigenvalues are analytic functions of θ ,
we denote them as Ej(θ).

At this point, we see that for any E′ > 0, and uniformly in |θ | < 1/2, there are finitely
many eigenvalues of H0(θ) En,m(θ) = α(2n+ 1)+β(m+ θ)2 below E′. These eigenvalues are
branches of analytic functions in θ and may display finitely many crossings with one another.
The same is true for those of the perturbed operator H(θ). In order to exclude the possibility
for a perturbed eigenvalue to be constant in θ , it is enough to impose that the perturbation
be smaller than half the smallest variation of the finitely many arcs of analytic functions free
from crossings below E. Therefore, below E = E′ − ‖W‖, the eigenvalues of H(θ) cannot
be constant and we have

Proposition 2.1. For any E > 0, the spectrum of the Hamiltonian (2.1) is purely absolutely
continuous below E if ‖W‖∞ is small enough.

Let us turn to the case where W depends on x only. We are interested in the properties of the
eigenvalues of Hm

0 (θ), which coincide with those of H̃m(θ). As the eigenfunctions of H̃m(θ)

are independent of m + θ , it is easier to deal with this operator as θ becomes complex than
with Hm

0 (θ). We define

h0(θ) := V (θ)H0(θ) V
−1(θ) (2.17)

then we have the relation

‖(h0(θ) + 1)−1‖2 = sup
m∈Z

‖rm(θ)rm(θ)∗‖ rm(θ) := (H̃m(θ) + 1)−1. (2.18)

When θ becomes complex, in which case we will write θ = θ1 + i θ2, the resolvent rm(θ)
remains compact and rm(θ)

∗ = (H̃m(θ) + 1)−1 so that

‖rm(θ)rm(θ)∗‖ = sup
n∈N0

1

|En(θ + m) + 1|2 (2.19)

since the basis {ϕn(u)}n∈N0
remains orthonormal for complex θ . Then one can show that this

norm goes to zero as θ → ∞ in some direction of the complex plane, uniformly in m ∈ Z.
Indeed, from (2.13) we get

‖rm(θ)rm(θ)∗‖= sup
n∈N0

1

[α(2n + 1) + β((m + θ1)2 − θ2
2 ) + 1]2 + [2βθ2(m + θ1)]2

� 1

[2βθ2(m + θ1)]2
(2.20)

which goes to zero as θ2 → ∞ uniformly in m provided θ1 is not an integer.
Furthermore, from the fact that h0(θ) is a self-adjoint holomorphic family of type A it

follows that (h0(θ) + 1)−1 is compact either for all θ or for no θ , cf [Ka, theorem VII.2.4].
We have already seen that (h0(θ) + 1)−1 is compact for θ real, so it is compact also for θ
complex. Thus (h0(θ) + 1)−1 (h∗

0(θ) + 1)−1 is a compact self-adjoint operator, and since the
family {ϕn(u)}n∈N0

still forms a complete orthonormal basis inL2(R), the eigenvalues of h0(θ)

retain the form (2.13). Hence one has

‖(h0(θ) + 1)−1(h0(θ)
∗ + 1)−1‖ = ‖(h0(θ) + 1)−1‖2 � 1

β2θ2
2

(2.21)

where we have chosen for simplicity θ1 = 1/2.
The perturbed fibre operator is

h(θ) = h0(θ) + V (θ)W(x) V −1(θ) = h0(θ) + W(x). (2.22)
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The point is now to show that the eigenvalues Ej(θ) of h(θ) are not constant in θ . Then the
same is true, as for θ real, also for the eigenvalues of

H(θ) = H0(θ) + W(x, y) (2.23)

and this yields the absolute continuity of (2.1).
We use the Thomas argument ( [Tm] and [RS, section XIII.16]) and assume that some

Ej(θ) is equal to E0 for all θ . From the above analysis it follows that E0 is an eigenvalue of
h(θ) also for all complex θ , and therefore

‖(h(θ) + 1)−1‖ � (E0 + 1)−1. (2.24)

On the other hand, a standard argument based on the resolvent identity shows that for
‖W(x)(h0(θ) + 1)−1‖ < 1 (i.e. θ2 large enough, cf (2.21)) is

‖(h(θ) + 1)−1‖ � ‖(h0(θ) + 1)−1‖
1 − ‖W(x)(h0(θ) + 1)−1‖ (2.25)

so ‖(h(θ) + 1)−1‖ → 0 as θ2 → ∞ by (2.21). In this way we get a contradiction with (2.24),
so no Ej(·) can be constant.

Finally, we note also that if W(x, y) ≡ W(y) is bounded and depends on y only, we get
by simple manipulations that H is unitarily equivalent to

H �
∫ ⊕

p∈R
H(p) dp (2.26)

where

H(p) = −∂2
y + α2y2 + p2 ω2

B2 + ω2
+ W(y − p B/(B2 + ω2)). (2.27)

As W is bounded, we see that the analytic eigenvalues {en(p)}n∈N of H(p) tend to
α(2n + 1) + p2 ω2

B2+ω2 as p → ∞. Therefore they cannot be constant and the spectrum of
H is purely absolutely continuous also.

This allows us to make the following claim.

Theorem 2.1. Let W1(x) ∈ L∞(R) be periodic in x and W2(y) ∈ L∞(R). Then the spectra
of both operators

H = −∂2
y + (−i∂x + yB)2 + ω2y2 + W1(x) (2.28)

H = −∂2
y + (−i∂x + yB)2 + ω2y2 + W2(y) (2.29)

are purely absolutely continuous for any ω �= 0.

3. Open gaps

The result of the previous section shows that the absolute continuity of the bottom of the
spectrum of the magnetic Hamiltonian in the presence of a parabolic confinement is not
affected by a small bounded x-periodic perturbation. Of course, one would like to know
how the spectrum looks like as a set, in particular how many gaps can open as a consequence
of the perturbation. We now show that for a non-constant W(·, y) there are generically many
gaps in the spectrum of H provided the coupling constant of the confinement is large enough.

We start again with the fibre Hamiltonian

H(θ) = −∂2
y + (−i∂x + yB)2 + ω2y2 + W(x, y) (3.1)

on L2([0, 2π ] × R) with the boundary conditions (2.3). We introduce a new variable s by

s = √
α y α :=

√
B2 + ω2 (3.2)
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and the orthonormal basis on L2(R)

ϕn(s) = Cn exp(−s2/2)Hn(s) Cn = (1/π)1/4 (2nn!)−1/2 n ∈ N0. (3.3)

Let us introduce some more notations:

W(α)
n,m(x) = (ϕn,Wϕm) =

∫
R

ϕn(s) ϕm(s)W(x, s/
√
α) ds n �= m

W(α)
n (x) = (ϕn,Wϕn) =

∫
R

ϕn(s)ϕn(s)W(x, s/
√
α) ds.

(3.4)

The matrix elements of H(θ) in the basis (3.3) are then the operators on L2([0, 2π ]) given by

Hn,m(θ) = δn,m [α(2n + 1) + Kn(θ)] + W(α)
n,m(x)(1 − δn,m)

−δn+1,m

√
2(n + 1)

α
iB∂x − δn−1,m

√
2n

α
iB∂x (3.5)

where we define Kn(θ) as

Kn(θ) = −∂2
x + W(α)

n (x) (3.6)

with the domain

D(θ) = {
f ∈ W2,2[0, 2π ]; f (2π) = e2π iθf (0), f ′(2π) = e2π iθf ′(0)

}
.

By [RS, section XIII.16] for eachn ∈ N0 the operatorKn(θ)has a purely discrete spectrum, and
none of their eigenvalues is constant in θ . We will denote the eigenvalues and eigenfunctions
of Kn(θ) by

εk(n, θ); ψn
k (x, θ) k ∈ Z (3.7)

respectively, where for any fixed θ and n the functions ψn
k (x, θ) form an orthonormal basis in

L2[0, 2π ]. It is shown in [RS, theorem XIII.91] that for a non-constant Wn at least one gap is
present in the spectrum of

Kn :=
∫ ⊕

|θ |�1/2
Kn(θ) dθ.

In other words, there exists some j such that

sup
|θ |�1/2

εj (n, θ) < inf
|θ |�1/2

εj+1(n, θ). (3.8)

We are particularly interested in the spectrum of H0,0, the direct integral from H0,0(θ) over θ ,
which contains at least one gap if W(α)

0 is not constant.
It follows from (3.5) that taking α large enough, this gap will not be covered by the spectra

of the other diagonal elements of Hn,m(θ). Then one needs only show that this gap remains
open after taking into account the off-diagonal elements of Hn,m(θ). To see that, we apply
perturbation theory. As the unperturbed operator we take

HD(θ) =
⊕
n∈N0

Hn,n(θ) on L2[0, 2π ] × l2 (3.9)

with eigenvalues and eigenvectors given by

α(2n + 1) + εk(n, θ) ψn
k (x, θ)




0
0
1
0
...


 (3.10)

respectively, where 1 stands in the nth row. Moreover, we have the following.
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Lemma 3.1. Let HOD(θ) = H(θ) − HD(θ). Then

‖HOD(θ)(HD(θ) + i)−1‖ = O(1/α) as α → ∞ (3.11)

uniformly in θ .
Proof. For

WD =
⊕
n∈N0

Wα
n (x)

we define WOD = W − WD . Then

‖WOD(HD(θ) + i)−1‖ � 2‖W‖∞‖(HD(θ) + i)−1‖ = O(1/α) (3.12)

as α → ∞ since dist(σ (HD(θ)), i) grows linearly with α.
Let us now take n fixed. For the other elements of HOD(θ), i.e. the last two terms on the

rhs of (3.5), we have(
i∂x ±

√
α(2n + 1)

)2
> 0 ± 2i

√
α(2n + 1) ∂x � −∂2

x + α(2n + 1) (3.13)

so that as quadratic forms on D(θ)

−B2

α
2(n + 1) ∂2

x � B2

α2
(−∂2

x + α(2n + 1))2. (3.14)

Then, in the sense of (3.11),

‖|ψn〉〈ψn|iBα−1/2
√

2(n + 1) ∂x |ψn+1〉〈ψn+1|(HD(θ) + i)−1‖
= ‖iBα−1/2

√
2(n + 1) ∂x (Hn+1,n+1(θ) + i)−1‖

� B

α
‖(−∂2

x + α(2n + 1))(−∂2
x + Wα

n+1α(2n + 3) + i)−1‖

� B

α

(
1 + ‖Wα

n+1(−∂2
x + Wα

n+1 + α(2n + 3) + i)−1‖) = O(1/α) (3.15)

as α → ∞, uniformly in n. Inequality (3.12) and the Schur condition, [Ka, example 3.2.3],
then give the statement of the lemma. �

Now the resolvent identity in combination with (3.11) implies

‖(H(θ) + i)−1 − (HD(θ) + i)−1‖
= ‖(H(θ) + i)−1HOD(θ)(HD(θ) + i)−1‖ → 0 as α → ∞ (3.16)

so that HD(θ) converges to H(θ) in norm resolvent sense, uniformly in θ . From perturbation
theory, see [Ka, theorem IV.2.25], we thus get the convergence of the spectra of HD(θ) and
H(θ). It follows that for large enough α, keeping B fixed, the gap between εj (0, θ) and
εj+1(0, θ) will be open also in the spectrum of H . The argument works for any fixed j ∈ Z,
i.e. sending α → ∞ we can keep any finite family of gaps contained in σ(H0,0) open. We
have thus proven:

Theorem 3.1. Let W(x, y) ∈ L∞(R2). Denote by N(H) and N(H0,0) the number of open
gaps in the spectrum of H and H0,0, respectively. If N(H0,0) is finite, then N = N(H0,0) holds
for ω large enough; in particular, an open gap exists for a sufficiently strong confinement
whenever the function W0 is non-constant. If N(H0,0) = ∞, then to any positive integer n
there is ω(n) such that

N(H) � n

holds for all ω � ω(n).
Remark. It is also clear from the above given argument, that taking ω large enough gives us
the absolute continuity of σ(H) at the bottom of the spectrum. More precisely, in the interval
[inf σ(H0,0), inf σ(H1,1)].
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4. Transport in the presence of localized perturbations

As we have indicated in the introduction, we turn now to situations when the perturbation is
not periodic, but bounded and localized in a sense to be precised below. In this case we have

H = H0 + W = −∂2
y + (−i∂x + yB)2 + ω2y2 + W(x, y) on L2(R2) (4.1)

with W(x, y) ∈ L∞(R2). By [RS, ch X] the Hamiltonian (4.1) is e.s.a. on C∞
0 (R2). For later

purposes we notice that S(R2), the Schwarz functions, is also a core for H . This follows from
the fact that H is clearly symmetric on S(R2) and C∞

0 (R2) is included in S(R2). The question
is the following: in what part of the spectrum and under which conditions does transport
survive in the presence of the impurity potential W(x, y)?

Instead of the Bloch decomposition we now employ the commutator method. The point
is to find a suitable conjugate operator A which satisfies the Mourre estimate

E2(H)[H, iA]E2(H) � κE2(H) (4.2)

for some strictly positive constant κ . HereE2(H) is the spectral projection ofH on the interval
2. Then, under some regularity assumptions on H , we can obtain the absence of the point
spectrum in the interval 2 using the Virial theorem, [GG].

Theorem 4.1 (Virial). Let H,A be self-adjoint operators on L2(R2) and assume that H is of
class C1(A), i.e. there is z ∈ ρ(H) such that

R � t �→ eitA(z − H)−1e−itA (4.3)

is of class C1 in the strong operator topology. Then

(ψ, [H, iA]ψ) = 0

for any eigenfunction ψ of H .

Under stronger hypothesis on H , we can apply the Mourre theorem (cf [Mo, ABG]) and
exclude even the possibility of singular continuous spectrum in 2. For a precise statement of
the Mourre theorem, we have the formulation from [Sa1, Sa2].

Theorem 4.2 (Mourre). Let H,A be self-adjoint operators on L2(R2) and assume that:

(1) There is α > 0 such that H is of class C1+α(A), i.e. H is C1(A) and the derivative of (4.3)
is Hölder continuous of order α.

(2) H and A satisfy the estimate (4.2) for an open interval 2 and κ > 0.

Then the spectrum of H in the interval 2 is purely absolutely continuous.

Remark. We shall use the last theorem with α = 1, which corresponds to the original
formulation given in [Mo], see also [CFKS, theorem 4.9].

The classical counterpart of the positive commutator (4.2) is an observable which increases
in time. To find a suitable candidate for the conjugate operator in our case, let us therefore
discuss first the classical dynamics of the unperturbed system.
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4.1. Classical solution in the absence of perturbation

We will denote the position vector of the particle by (x(t), y(t)). In the absence of W(x, y)

the classical Hamiltonian is of the form

Hcl = (px + yB)2 + p2
y + ω2 y2 (4.4)

where

px(t) = 1
2 ẋ(t) − y(t) B py(t) = 1

2 ẏ(t). (4.5)

From Hamilton’s equations we thus get

ṗx(t) = 0 ṗy(t) = −ẋ(t)B − 2ω2 y(t). (4.6)

Given initial conditions x(0), y(0), px(0), py(0), the solution of (4.6) reads

x(t) = − B

α2
py(0) cos(2αt) +

B

α

(
y(0) +

B

4α2
px(0)

)
sin(2αt)

+ 2px(0) t
ω2

α2
+ x(0) +

B

α2
py(0)

y(t) = α−1py(0) sin(2αt) +

(
y(0) +

B

4α2
px(0)

)
cos(2αt) − B

α2
px(0)

px(t) = px(0)

py(t) = py(0) cos(2αt) − α

(
y(0) +

B

4α2
px(0)

)
sin(2αt). (4.7)

Note that the momentum px is preserved since the free Hamiltonian H0 commutes with
x-translations, see (4.6). It is easy to see that the classical trajectory is now given by an
ellipse, with the position vector of its centre being

S(t) =
[

2px(0) t
ω2

α2
+ x(0) +

B

α2
py(0),− B

α2
px(0)

]
(4.8)

so that as long asω �= 0, i.e. the confinement is present, the centre of the ellipse is moving along
the x axis with constant velocity and in the direction given by a sign of the initial momentum
px(0). Note also, that the two ellipses which correspond to the motions in opposite directions
are mutually shifted by 2B

α2 px(0).
A classical observable whose absolute value is increasing in time is thus the x-component

of S(t), which can be written as

Sx(t) = x(t) +
B

α2
py(t). (4.9)

However, since we need something which has a definite sign independently of the initial
conditions, we multiply (4.9) by px(t); then

∂t (px(t)Sx(t)) = 2p2
x(0)

ω2

α2
> 0. (4.10)

In other words, the corresponding quantum mechanical conjugate operator can be chosen in
the form

A = 1
2 (−i∂xx − ix∂x) − B

α2
∂x∂y. (4.11)
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4.2. Absence of eigenvalues and absolute continuity

Now we are going to show that under some regularity and decay assumptions on W the
absolutely continuous spectrum of the free Hamiltonian persists in some parts of the spectrum
of H . In particular, this makes scattering on the impurity in our parabolic channel possible.

The conditions we impose on W(x, y) then are as follows:

(a) W0 :=‖W‖∞ < α, W ′
0 := ‖x∂xW‖∞ < ∞

(b) W ∈ C2(R2) and

‖∂2
xW‖∞ < ∞, ‖∂2

yW‖∞ < ∞, ‖∂x∂yW‖∞ < ∞, ‖x2∂2
xW‖∞ < ∞.

Before looking for the Mourre estimate, we check the regularity of the map (4.3).
First we state an auxiliary lemma, which is proven in the appendix.

Lemma 4.1. There exists a number c such that:

(i) ‖∂2
y R0(λ)‖ � c

(ii) ‖∂2
x R0(λ)‖, 2 ‖y∂xR0(λ)‖, ‖y2R0(λ)‖ � c 1+α2

ω2

(iii) ‖∂x∂yR0(λ)‖ � c

√
1+α2

ω2

where R0(λ) = (H0 + λ)−1, λ � 0.

Now we show that under the assumption (a) one can apply the Virial theorem to a pair of
operators H, A.

Lemma 4.2. Let W(x, y) satisfy the condition (a). Then H is of class C1(A).

Proof. By [GG] and [ABG, theorem 6.3.4] to show that H is C1(A), it is enough to prove that:

(1) eitA preserves D(H),
(2) There is a constant c such that

|(Hϕ,Aϕ) − (Aϕ,Hϕ)| � c (‖Hϕ‖2 + ‖ϕ‖2) ϕ ∈ D(H) ∩ D(A).

Since W is bounded, the domain of H coincides with that of H0 and we can thus check the
condition (1) only for D(H0). Let D be a core for H0. It follows from [ABG, lemma 7.6.5],
that to prove (1) it suffices to show, in addition to (2), that:

(i) for u ∈ D and t ∈ R, eitAu ∈ D and sup|t |�1 ‖H0eitAu‖ < ∞.
(ii) the derivative ∂te−itAH0eitAu|t=0 ≡ [H0, iA]u exists weakly for each vector u ∈ D.

To begin with, we notice that A being quadratic in momentum and position, we know
by [Hag, theorem 3.4] that the unitary propagator U(t) = e−itA is such that

U(t) : S(R2) �→ S(R2).

Now, S(R2) is a core for H0, so the first part of (i) is satisfied. To see how U(t) acts on the
function fromS(R2), we apply a partial Fourier transformation in y, and denote the transformed
operators by Ĥ0 and Â. It can be directly checked, that for any ψ(x, y) ∈ S(R2)

e−itÂψ̂(x, k) = e−t/2ψ̂
(
e−t x − kµ(1 − e−t ), k

)
(4.12)

where ψ̂(x, k) = Fy ψ(x, y) and µ := B
α2 .

A simple calculation then gives

e−itÂ Ĥ0 eitÂψ̂(x, k) = a(t) ∂2
x ψ̂(x, k) + b(t)∂x∂kψ̂(x, k) − α2∂2

k ψ̂(x, k) + k2ψ̂(x, k)

(4.13)
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where

a(t) = −e2t
(
1 + 2Betµ(1 − et ) + α2e2tµ2(1 − et )2

)
b(t) = −et

(
2B + 2α2etµ(1 − et )

) (4.14)

are both C∞, so that the second part of (i) and (ii) hold.
Moreover, it is easily seen from (4.12) that U(t) is strongly differentiable on S(R2). It

follows then from [RS, theorem VIII.10] that A is essentially self-adjoint on S(R2).
This allows us to verify the condition (2) only on functions in S(R2). First we notice that

H can be written as

H =
(

−i∂x
B

α
+ yα

)2

− β∂2
x − ∂2

y + W(x, y) (4.15)

reminding that

β = ω2

α2
.

Then for any ϕ ∈ S(R2)

|(Hϕ,Aϕ) − (Aϕ,Hϕ)| � |(ϕ,−2 β ∂2
x ϕ)|

+µ|(Wϕ, ∂x∂yϕ) − (Wϕ, ∂x∂yϕ)| + |(ϕ, (∂xW)xϕ)|
� 2|(ϕ,H0ϕ)| + 2µW0‖ϕ‖ ‖∂x∂yϕ‖ + ‖ϕ‖2W ′

0. (4.16)

On the other hand we have

‖i∂xϕ‖2 � β−1 ‖ϕ‖ ‖H0ϕ‖ � β−1 ‖ϕ‖(‖Hϕ‖ + W0‖ϕ‖)
‖i∂yϕ‖2 � ‖ϕ‖ ‖H0ϕ‖ � ‖ϕ‖(‖Hϕ‖ + W0‖ϕ‖) (4.17)

and since H � α − W0 > 0 holds by assumption, also

‖ϕ‖ � (α − W0)
−1‖Hϕ‖. (4.18)

Moreover, it follows from lemma 4.1, that

‖∂x∂yϕ‖ � const ‖H0ϕ‖. (4.19)

Using all the inequalities we can find some large enough constant c, depending on α and W0,
such that

|(Hϕ,Aϕ) − (Aϕ,Hϕ)| � c (‖Hϕ‖2 + ‖ϕ‖2) (4.20)

thus proving (2).
Finally, (2) in combination with [ABG, lemma 7.6.5] shows that eitÂ preserves D(Ĥ0).

That is, for any ψ(x, y) ∈ D(H0) we have eitÂψ̂(x, k) ∈ D(Ĥ0) and

eitAψ(x, y) = F−1
y eitÂψ̂(x, k) ∈ F−1

y D(Ĥ0) = D(H0) (4.21)

which completes the proof of the lemma. �

The hypothesis of the Mourre theorem requires a slightly stronger regularity of H . We
will impose some additional assumptions on W(x, y).

Lemma 4.3. Assume (a) and (b). Then H is C2(A).

Proof. We will prove the statement of the lemma separately for H0 and W .
First we prove that H0 is C∞(A). We work in the Fourier picture, as above. Consider

Ĥ0(t) = e−itÂ Ĥ0 eitÂ (4.22)
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self-adjoint on D(Ĥ0) for any t ∈ R and, for λ > ‖W‖ + 1,

R̂0(t) = e−itÂ (Ĥ0 + λ)−1eitÂ. (4.23)

As R̂0(t + t0) = e−it0Â R̂0(t)eit0Â, it is enough to check differentiability at 0. From the resolvent
identity on (Ĥ0 + 1)S(R2) and (4.13), we get

R̂0(t) − R̂0(0) = −R̂0(t)(Ĥ0(t) − Ĥ0)R̂0(0)

= R̂0(t)(ã(t)∂
2
x + b̃(t)∂x∂k)R̂0(0)

≡ R̂0(t)B(t) (4.24)

where ã(t) and b̃(t) are both C∞ and O(t) as t → 0. It is proven in the appendix, see
lemma 4.1, that ∂2

x R̂0(0) and ∂x∂kR̂0(0) are bounded. Therefore the operator B(t) is bounded,
C∞ and B(t) → 0 in norm as t → 0.

With the properties of B(t) listed above, we deduce that in a neighbourhood of t = 0

R̂0(t) = R̂0(0)(I − B(t))−1 (4.25)

which is C∞ in norm, since B is, and we can conclude that H0 is C∞(A).
To show that (H0 +W) ∈ C2(A) it is sufficient by [Mo,CFKS, theorem 4.9] and lemma 4.2 to
find some c > 0 such that

(ϕ, [[W, iA], iA]ϕ) � c(‖Hϕ‖2 + ‖ϕ‖2) (4.26)

for any ϕ ∈ D(H) ∩ D(A). Expanding the second commutator in (4.26) we write for any
ϕ ∈ S(R2)

(ϕ, [[W, iA], iA]ϕ) = (ϕ, x(∂xW)ϕ) + (ϕ, x2(∂2
xW)ϕ)

+ iµ [2(x(∂xW)ϕ, ∂x∂yϕ) − 2(∂x∂yϕ, x(∂xW)ϕ)]

+ iµ [(∂x∂yϕ,Wϕ) − (ϕ,W∂x∂yϕ)] − µ2((∂x∂yW)ϕ, ∂x∂yϕ)

−µ2[(∂x∂yϕ, (∂x∂yW)ϕ) − (∂x, (∂
2
yW)∂xϕ) − (∂yϕ, (∂

2
xW)∂yϕ)]. (4.27)

Now we can follow the proof of lemma 4.2 and using the assumption (b) we get the following
bound:

|(ϕ, [[W, iA], iA]ϕ)| � ‖ϕ‖2‖x2∂2
x W‖∞ + W ′

0 ‖ϕ‖(‖ϕ‖ + 4‖∂x∂yϕ‖)
+ 2µW0‖ϕ‖ ‖∂x∂yϕ‖ + µ2‖∂2

yW‖∞‖∂xϕ‖2

+µ2‖∂2
xW‖∞‖∂yϕ‖2 + 2µ2‖∂x∂yW‖∞‖∂x∂yϕ‖ ‖ϕ‖

� const (‖Hϕ‖2 + ‖ϕ‖2) (4.28)

where the last inequality is justified by lemma 4.1. �
In order to prove the Mourre estimate (4.2) we will proceed in two steps. First, we find a

positive lower bound on the contribution to the commutator coming from H0. Secondly, we
control the contribution from W so that we preserve the sought positivity of [H0 +W, iA]. The
former is done in the following.

Lemma 4.4. Let α > δ > 0 and define

I (α, δ) :=
⋃
n∈N0

[(2n + 1)α − δ, (2n + 1)α + δ]. (4.29)

Then for any E /∈ I (α, δ) there exists an open interval 2 � E such that

E2(H)[H0, iA]E2(H) � δE2(H)

holds for W0 small enough.
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Proof. We define an operator

HL(α) =
(

−i∂x
B

α
+ yα

)2

− ∂2
y (4.30)

which is unitarily equivalent to the Landau Hamiltonian with the magnetic field of a strength
α, so that σ(HL(α)) = {(2n + 1)α}n∈N0 . It follows that

[H0, iA] = −2β ∂2
x = 2(H0 − HL(α)). (4.31)

Now, fix λ /∈ I (α, δ) and let us denote by n0(λ) the largest natural number for which
α(2n0(λ) + 1) � λ. The spectral family of H0 is thus given by

E0(λ) =
∑

n�n0(λ)

Pn χt ([0, λ − α(2n + 1))) (4.32)

where Pn is the projection on the nth Landau level of HL(α) and χt is the spectral projection
of −β∂2

x .
To continue consider an open interval 2̃ = (E − ε, E + ε) with ε such that 2̃ �⊂ I (α, δ).

For the spectral projection of H0 on the interval 2̃ we then get

E2̃(H0) = E0(E + ε) − E0(E − ε)

=
∑

n�n0(E)

Pn χt ([E − (2n + 1)α − ε, E − (2n + 1)α + ε)) (4.33)

and this gives us the lower bound on E2̃(H0)[H0, iA]E2̃(H0) in the form

E2̃(H0)[H0, iA]E2̃(H0) = E2̃(H0)(−2β ∂2
x )E2̃(H0)

=
∑

n�n0(E)

Pn χt ([E − (2n + 1)α − ε, E − (2n + 1)α + ε))(−2β ∂2
x )

×Pn χt ([E − (2n + 1)α − ε, E − (2n + 1)α + ε)) � E2̃(H0) 2 δ. (4.34)

Applying the argument of [FGW] this result can be extended to H . For I (α, δ) �⊃ 2 � E we
decompose E2(H) as

E2(H) = E2̃(H0)E2(H) + (1 − E2̃(H0))E2(H)

and since E2̃(H0) commutes with [H0, iA] we get

E2(H) ([H0, iA] − 2 δ)E2(H) = E2(H)E2̃(H0)([H0, iA] − 2 δ)E2̃(H0)E2(H)

+E2(H)([H0, iA] − 2 δ)(1 − E2̃(H0))E2(H). (4.35)

From this one easily obtains the following inequality:

E2(H) ([H0, iA] − 2 δ)E2(H) � �E2(H)E2̃(H0)([H0, iA] − 2 δ)E2̃(H0)E2(H)

−‖([H0, iA] − 2 δ)(1 − E2̃(H0))E2(H)‖ (4.36)

where the first term on the rhs is non-negative. From lemma 4.1 we know that

‖β ∂2
x H

−1
0 ‖ � β C(ω,B) = c

1 + α2

α2
(4.37)

where c is a numerical constant. We can thus follow [FGW] and claim that the second term is
bounded from above by

2βC(ω,B)‖H0(1 − E2̃(H0))(H0 − E)−1‖ ‖(H0 − E)E2(H)‖
+ 2 δ ‖H−1

0 ‖ ‖H0(1 − E2̃(H0))(H0 − E)−1‖ ‖(H0 − E)E2(H)‖
� 2(δα−1 + βC(ω,B))(1 + E ε−1)(|2| + W0) (4.38)
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Figure 1. Energy intervals for the Mourre estimate.

so that for

(|2| + W0) <
δ

2(δα−1 + βC(ω,B))(1 + Eε−1)
(4.39)

is

E2(H)([H0, iA] − 2 δ)E2(H) � −δ

and hence

E2(H)[H0, iA]E2(H) � δE2(H) (4.40)

which is what we set out to prove. �
Armed with these lemmas we are in a position to prove the Mourre estimate for H .

Lemma 4.5. Let E /∈ I (α, δ + ε). Assume moreover that

(I ) W0 <
δ

2(δα−1 + βC(ω,B))(1 + Eε−1)

and

(II ) W ′
0 + Bα−2

√
c C(ω,B)W0 (E + W0) < δ/2.

(4.41)

Then there is an open interval 2 � E such that

E2(H)[H, iA]E2(H) � δ/2E2(H). (4.42)

Proof. Consider again some open interval21 � E, see figure 1, and a stateψ = E21(H)ψ . We
mimick the argument used in the proof of lemma 4.2 and keeping in mind that ‖(H −E)ψ‖ �
|21| ‖ψ‖ we get

|(ψ, [W, iA]ψ)| � W ′
0 ‖ψ‖2 + 2Bα−2W0‖∂x∂yψ‖ ‖ψ‖

� W ′
0 ‖ψ‖2 + Bα−2

√
c C(ω,B)W0(E + W0 + |21|) ‖ψ‖2

(4.43)

where we have used the fact that 2‖∂x∂yH−1
0 ‖ �

√
c C(ω,B), see lemma 4.1.

By letting |21| → 0 we get from (4.41) the upper bound on the contribution fromW(x, y):

|(ψ, [W, iA]ψ)| < δ/2 ‖ψ‖2. (4.44)

On the other hand by lemma 4.4 for W0 sufficiently small there is 22 � E such that

(ψ, [H0, iA]ψ) � δ ‖ψ‖2 (4.45)

for ψ = E22(H)ψ .
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To complete the proof it suffices to take 2 = 21 ∩ 22. �

Note that once the condition (4.41) holds for some Ẽ, it holds also for all E � Ẽ. This
leads us to the following definition:

2(E, α, δ + ε) := {λ| λ � E, λ /∈ I (α, δ + ε)}. (4.46)

Now we are ready to state our main result.

Theorem 4.3. Assume W0 =‖W‖∞ < α, W ′
0 = ‖x∂xW‖∞ < ∞ and that the assumptions of

lemma (4.5) are satisfied for some ε and E /∈ I (α, δ + ε). Then:

(1) H has no eigenvalues in the set 2(E, α, δ + ε),
(2) if in addition W ∈ C2(R2) and

‖∂2
xW‖∞ < ∞, ‖∂2

yW‖∞ < ∞, ‖∂x∂yW‖∞ < ∞, ‖x2∂2
xW‖∞ < ∞

then the spectrum of H is in 2(E, α, δ + ε) purely absolutely continuous.

Proof. Application of the Virial and Mourre theorems respectively, and lemmas 4.2, 4.3
and 4.5. �

Remark. Theorem 4.3 does not exclude the possibility that the spectrum of H is empty in the
considered interval. However, it follows from the standard perturbative argument that since
the spectrum of H0 = H − W includes the whole interval [α,∞) this cannot happen for W0

small enough.
Let us now consider the following scaling:

E = E0 α δ = δ0 α ε = ε0 α

where E0, δ0, ε0 are fixed. From (I ) we then get

W0 <
δ0ε0α

2
(
δ0 + c 1+α2

α2

)
(ε0 + E0)

→ ∞ as ω → ∞ (4.47)

and similarly from (II )

W ′
0 < α δ0/2 − cBα−2

√
1 + α2

α2
W0(E0 α + W0) → ∞ as ω → ∞. (4.48)

In other words, for ω sufficiently large there is some interval in between the modified
Landau levels, in which the transport survives whenever W0, W

′
0 < ∞. We thus have

Corollary 4.1. Let E0, δ0, ε0 be fixed and assume that both W0 and W ′
0 are finite. Then the

statements of theorem 4.3 hold in the set 2(αE0, α, α(δ0 + ε0)) provided ω is large enough.

On the other hand, in the high-energy limit the behaviour of the bound (I ) is as E−1.
Accordingly, theorem 4.3 proves the absence of eigenvalues respectively absolute continuity
only in a finite number of intervals. In this sense our result is comparable with those
of [FGW,BP], where the upper bound on the size of perturbation is also O(E−1) as E → ∞.
For comparison we note that the same bound on ‖W‖∞ obtained in [MMP] is decreasing with
energy as E−4.
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4.3. The positivity of [H0, iA]: a more general approach

As we have seen above, the condition W ′
0 < ∞ which does not allow us to consider non-

localized perturbations, e.g. random, comes from the fact that our conjugate operator includes
the dilation generator xpx . Let us now show that, for A being a quadratic function of
(x, y, px, py), the presence of this term is necessary if one requires [H0, iA] to be definite
positive.

We take A in the form

A =
∑
j,k

αj,k∂xj ∂xk + i
∑
j,k

βj,k(xk∂xj + ∂xj xk) +
∑
j,k

γj,kxjxk + i
∑
j

δj ∂xj +
∑
j

εj xj (4.49)

where j, k = 1, 2. Assume that the ‘bad’ term is absent, i.e. β1,1 = 0. The straightforward
computation then gives

[H0, iA] = 4Bα1,2 p
2
1 + 2(Bα2,2 − β1,2 − β2,1) p1p2 − 4β2,2 p

2
2 + 4γ1,2 x1p2

+ (2γ1,1 + Bβ2,1)(x1p1 + p1x1) + 4(α2α1,2 + γ1,2 − Bβ2,2) x2p1

+ 2(2α2α2,2 + 2γ2,2 − Bβ2,1)(x2p2 + p2x2)

+ 4(α2β2,1 + Bγ1,1) x1x2 + 4(α2β2,2 + Bγ1,2) x
2
2 + i(ε1p1 + ε2p2)

+ 2δ2α
2 x2 − 2i(γ1,1 + γ2,2 + α2α2,2). (4.50)

First of all notice that since H0 is purely quadratic, the linear terms of A produce again only
linear terms in [H0, iA] and we can thus leave them out without loss of generality. The central
point is that, due to the translation invariance in x, the term proportional to x2

1 is missing in
[H0, iA]. This means that if we want [H0, iA] to be definite positive, we have to make the
terms with x1 vanish:

γ1,2 = 0 2γ1,1 + Bβ2,1 = 0 α2β2,1 + Bγ1,1 = 0. (4.51)

But now x2
2 and p2

2 have necessarily opposite signs, so that we also need β2,2 to be zero, which
implies that x2

2 is absent as well. Following the argument given above for x2
1 we get

α1,2 = 0 2α2α2,2 + 2γ2,2 − Bβ2,1 = 0 (4.52)

and we are left with

2(Bα2,2 − β1,2 − β2,1) p1p2

which cannot be definite positive.
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Appendix

Proof of lemma 4.1. Application of a partial Fourier transform in x shows that H0 is unitarily
equivalent to

Ĥ0 = −∂2
v + u2 + 2Buv + α2 v2 = P 2 + V (u, v) (A.1)
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where P := −i∂v . We now mimick the argument used in [BEH, example 7.2.4]. First of all
note that since

u2 + 2Buv + α2v2 = (u + Bv)2 + ω2v2

we can write

V (u, v) = (V 1/2(u, v))2.

For ψ ∈ S(R2)

‖(P 2 + V )ψ‖2 = (ψ, (P 4 + V 2 + P 2V + VP 2)ψ)

= (ψ, (P 4 + V 2 + 2PVP + [P, [P, V ]])ψ). (A.2)

Furthermore, we compute

[P, [P, V ]] = [P,−i∂vV ] = −∂2
vV = −2α2.

Then

‖(P 2 + V )ψ‖2 = ‖P 2ψ‖2 + ‖Vψ‖2 + 2‖V 1/2Pψ‖2 − 2α2‖ψ‖2

so that

‖P 2ψ‖2 + ‖Vψ‖2 � 2α2‖ψ‖2 + ‖(P 2 + V )ψ‖2.

Since both P 2, V are closed we can follow the argument given in [BEH, example 7.2.4] and
claim that

D(P 2 + V ) = D(P 2) ∩ D(V ). (A.3)

Taking R̂0(λ) = (Ĥ0 +λ)−1 for some λ > 0 it then follows from closed graph theorem that both

P 2R̂0(λ) V R̂0(λ)

are bounded. More precisely, one can show that for any ψ ∈ S(R2)

‖P 2R̂0(λ)ψ‖ �
√

6 ‖ψ‖ ‖V R̂0(λ)ψ‖ �
√

6 ‖ψ‖ (A.4)

which proves (i). To continue we note that V (u, v) can be diagonalized by an orthogonal
transform T so that

V (u, v) = λ+û
2 + λ−v̂2 (A.5)

where (û, v̂) = T (u, v) and

λ± = 1 + α2 ±
√
(1 + α2)2 − 4ω2

2
.

Therefore we have

V (u, v) � λ−(u2 + v2) = 1

2

(1 + α2)2 − (1 + α2)2 + 4ω2

1 + α2 +
√
(1 + α2)2 − 4ω2

(u2 + v2)

� ω2

1 + α2
(u2 + v2). (A.6)

From (A.1) we know that there exists a unitary operator U such that

Ĥ0 = UH0U
−1.

Now taking ϕ = Uψ we get

‖∂2
xψ‖ = ‖u2ϕ‖ � 1 + α2

ω2
‖V ϕ‖ ‖y2ψ‖ = ‖v2ϕ‖ � 1 + α2

ω2
‖V ϕ‖ (A.7)

and

‖y∂xψ‖ = ‖uvϕ‖ � 1

2

1 + α2

ω2
‖V ϕ‖ (A.8)

which gives us (ii). Finally,

‖∂x∂yψ‖2 = (uPϕ, uPϕ) � ‖P 2ϕ‖ ‖u2ϕ‖ � c2 1 + α2

ω2
‖Ĥ0ϕ‖2. (A.9)
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